SPPU-TE-COMP-CONTENT - KSKA Git

Total No	o. of Questions : 4] SEAT No. :
P8550	[Total No. of Pages : 2
	[Oct 22/TE/Insem]-526
	T.E. (Computer Engineering)
	THEORY OF COMPUTATION
	(2019 Pattern) (Semester -I) (310242)
Time: 1	Hour] [Max. Marks : 30
	ions to the candidates:
1)	Answer QI or Q2, Q3 or Q4.
2) 3)	Neat diagrams must be drawn wherever necessary. Figures to the right side indicate full marks.
<i>4</i>)	Assume suitable data, if necessary.
ŕ	Assume suitable data, if necessary.
0.71	
Q1) a)	Convert the given NFA– ε to an NFA to DFA. [10]
	9.7
	$B \stackrel{0}{\longleftarrow} C \stackrel{\circ}{\bigcirc} C$
	0 ε
	\rightarrow (A)
	ϵ E
b)	Define Pumping Lemma and apply it to prove the following
	$L=\{0^{m}1^{n}0^{m+n} \mid m>=1 \text{ and } n>=1\} \text{ is not regular}$ [5]
	OR 96.
Q2) a)	Convert following NFA to DFA [6]
~ /	
	$L=\{0^{m}1^{n}0^{m+n} \mid m>=1 \text{ and } n>=1\} \text{ is not regular}$ OR $Convert following NFA to DFA$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
	q_0 q_1 q_2
b)	Design a Mealy machine that accepts strings ending in '00' or '11'.
0)	Convert the Mealy machine to the equivalent Moore machine [9]

P.T.O.

SPPU-TE-COMP-CONTENT - KSKA Git

Convert the following RE to ε -NFA and find the ε -closure of all the **Q3**) a) states and corresponding DFA. (0+1)*. 1.(0+1)[9] The set of strings over $\{0,1\}$ that have at least one 1. **[6]** b) The set of strings over $\{0,1\}$ that have at most one 1. The set of all strings over $\{0,1\}$ ending with 00 and beginning with 1. OR Consider the two RE r=0*+1*, s=01*+10*+1*0+(0*1)**Q4*) a) [8] Find the string corresponding to r but not to s. Find the string corresponding to s but not to reii) Find the string corresponding to both r & s Find the string corresponding to neither r nor s. Write regular expressions for the following languages over the alphabet $\sum = \{a,b\}$ [7] i) All strings that do not end with 'aa'. The set of all strings ending neither in b nor in ba ii) Find the shortest string that is not in the language represented by iii) the regular expression a*(ab)*b*.