DFA Minimization-1

Minimization of DFA is required to obtain the minimal version of any DFA which consists of the minimum number of states possible

Minimization of DFA is required to obtain the minimal version of any DFA which consists of the minimum number of states possible $\frac{1}{2}$

DFA 5 states

4 States

Minimization of DFA is required to obtain the minimal version of any DFA which consists of the minimum number of states possible $\frac{1}{2}$

Minimization of DFA is required to obtain the minimal version of any DFA which consists of the minimum number of states possible $\frac{1}{2}$

Minimization of DFA is required to obtain the minimal version of any DFA which consists of the minimum number of states possible

Minimization of DFA is required to obtain the minimal version of any DFA which consists of the minimum number of states possible

Equivalent

Two states 'A' and 'B' are said to be equivalent if

$$\delta(A, X) \rightarrow F$$
ond
 $\delta(B, X) \rightarrow F$
 $\delta(A, X) \nrightarrow F$
 $\delta(B, X) \rightarrow F$
 $\delta(B, X) \rightarrow F$

where 'X' is any input String

Equivalent

Two states 'A' and 'B' are said to be equivalent if

$$\delta(A, X) \rightarrow F$$
ond
$$\delta(B, X) \rightarrow F$$

$$\delta(A, X) \leftrightarrow F$$

$$\delta(A, X) \leftrightarrow F$$

$$\delta(A, X) \leftrightarrow F$$

$$\delta(B, X) \leftrightarrow F$$

where 'X' is any input String

If |X| = 0, then A and B are said to be 0 equivalent

If |X| = 1, then A and B are said to be 1 equivalent

If |X| = 2, then A and B are said to be 2 equivalent

If |X| = n, then A and B are said to be n equivalent

• Questions????