SPPU-TE-COMP-CONTENT – KSKA Git

Total No. of Questions : 8]

PA-1442

SEAT No. :

[Total No. of Pages : 3

[5926]-58

T.E. (Computer Engg.) **THEORY OF COMPUTATION** (2019 Pattern) (Semester-I) (310242)

	^{1/2} Hours] [Max. Max ions to the candidates: Answer Q1 or Q2, Q3. orQ4, Q5 or Q6, and Q7 or Q8. Neat diagrams must be drawn wherever necessary. Figure to the right indicate full marks. Assume suiable data if necessary.	rks : 70	
<i>Q1</i>) a)	Convert the following grammar to Chomsky Normal form (CNF)	[9]	
	$S \rightarrow a \mid aA \mid B$		
	$A \rightarrow aBB \mid \epsilon$		
	$B \rightarrow Aa \mid b$		
b)	Convert the following grammar to GNF.	[9]	
	$S \rightarrow XB \mid AA$		
	$A \rightarrow a \mid SA$		
	$B \rightarrow b$		
	X→a		
OR			
Q2) a)	Show that the following grammar is ambiguous.	[6]	
	S-> iCtS		
	S-> iCtSes		
	S-> a		
	C-> b		
b)	Convert the following grammar to chomsky normal form (CNF) $G=(\{S\}, \{a, b\}, P, S)$ $P = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid aa \mid bb\}$	[6]	

P.T.O.

SPPU-TE-COMP-CONTENT – KSKA Git

c) Consider the following grammar.

 $E-> E+E \mid E-E \mid id$

Derive the string id-id*id using

- i) Leftmost derivation
- ii) Rightmost derivation.
- Q3) a) Find the transition rules of PDA for accepting a language
 L={w∈ {a,b}* |w is of the aⁿbⁿ with n≥1} through both empty stack and final state and demonstrates the stack operation for the string aaabbb.[9]
 - b) Design a PDA for accepting a language {aⁿb²ⁿ | n>=1} [9]
 Simulate this PDA for the input string "aaabbbbbbb".

OR

- Q4) a) Design a PDA for accepting a language { $0^{n}1^{m}0^{n} | m, n \ge 1$ }. Simulate this PDA for the input string "0011100". [9]
 - b) Construct a PDA for $L = \{0^n 1^m 2^m 3^n | m, n \ge 0\}$ [6]
 - c) Compare FA and PDA. [3]
- Q5) a) Write a short note on Halting problem of Turing machine. [4]
 - b) Design a Turing Machine for the following language by Considering transition table and diagram. [9]
 - TM That erases all non blank symbols on the tape where the sequence of non blank symbols does not contain any blank symbol B in between.
 - ii) TM that find 2's complement of a binary machine.
 - c) Design a Turing Machine that reads a string representing a binary number and erases all leading 0's in the string. However, if the string comprises of only 0's it keeps one 0. [5]

SPPU-TE-COMP-CONTENT – KSKA Git

Q6) a)	Write short notes on: [4	4]	
	i) Reducibility		
	ii) Multi-tape Turing Machine		
b)	Construct a Turing Machine for R=aba*b	6]	
c)	Design a TM that multiplies two unary numbers over $\Sigma = \{1\}$. Wri simulation for the string 11*111.	ite 8]	
Q7) a)		8]	
b)	Define and compare class P and class NP problem with suitable diagra	im [8]	
OR			
Q8) a)	Explain in brief the term "recursively enumerable".	6]	
b)	Explain examples of problems in NP. [0	6]	
c)	Differentiate between P Class and NP class.	4]	

