310241: Theory of Computation

Theory of Computation

- Course Objectives:
 - To Study abstract computing models
 - To learn Grammar and Turing Machine
 - To learn about the theory of computability and complexity

Theory of Computation

- Course Outcomes: On completion of the course, student will be able to-
- design deterministic Turing machine for all inputs and all outputs
- subdivide problem space based on input subdivision using constraints
- apply linguistic theory

Unit - 1

- Introduction to Formal language,
- introduction to language translation logic, Essentials of translation,
- Alphabets and languages, Finite representation of language,
- Finite Automata (FA): An Informal Picture of FA, Finite State Machine (FSM), Language accepted by FA,
- Definition of Regular Language, Deterministic and Nondeterministic FA(DFA and NFA), epsilon- NFA,
- FA with output: Moore and Mealy machines -Definition, models, inter-conversion.
- Case Study: FSM for vending machine, spell checker Unit

Introduction to Theory of Computation

- One of the most fundamental course of Computer Engineering.
- Help to understand how people have thought about computer science as a science in past 50 years.
- Its is mainly about what kind of things can you compute mechanically with machines , how fast and how much space does it take to do so.

Example -1

- Lets consider a machine that accepts all binary strings that ends with '0' and reject all other strings that do not end with '0'
- Eg. 11010010 [Accepts] 10011001 [Rejects]

Example-2

- Lets consider a machine that accepts all valid java codes.
- Java code → Binary Equivalent of code -> Valid ? [Accepts]

Invalid [Rejects]

Can We design such a system ?????

Example-2 (Cont..)

Yes.....

Eg. Compiler

We know compile only accepts valid code and if it is not written correctly ,then it gives error and says It's invalid.

By now u must have got sligh

TOC and Compiler relation.

it of الم

shutterstock.com • 1142789993

Basic Definitions

- 1. Alphabet a finite set of symbols.
 - Notation: Σ .
 - Examples: Binary alphabet {0,1},

English alphabet {a,...,z,!,?,...}

- 2. String over an alphabet Σ a finite sequence of symbols
 - from Σ .
 - Notation: (a) Letters u, v, w, x, y, and z denote strings.

(b) Convention: concatenate the symbols. No parentheses or commas used.

Examples: 0000 is a string over the binary alphabet.
 alphabet.

Definitions (contd.)

- 3. Empty string: e or ϵ denotes the empty sequence of symbols.
- 4. Language over alphabet Σ a set of strings over Σ .
 - Notation: L.
 - Examples:
 - {0, 00, 000, ...} is an "infinite" language over the binary alphabet.
 - {a, b, c} is a "finite" language over the English alphabet.

Definitions (contd.)

- 5. Empty language empty set of strings. Notation: Φ .
- Binary operation on strings: Concatenation of two strings u.v - concatenate the symbols of u and v.
 - Notation: uv
 - Examples:
 - 00.11 = 0011.
 - ε.u = u.ε = u for every u. (identity for concatenation)

Languages

Language: a set of strings

String: a sequence of symbols from some alphabet

Example: Strings: cat, dog, house Language: {cat, dog, house}

Alphabet: $\Sigma = a, b, C, \dots, z$

Alphabets and Strings

An alphabet is a set of symbols Example Alphabet: $\Sigma = \{a, b\}$

A string is a sequence of symbols from the alphabet

Example Stringsau = ababv = bbbaaaabbaw = abbaaaabbbaabbaw = abba

Languages are used to describe computation problems:

PRIMES={2,3,5,7,1,1,1,3,1,7,...}

$EVEN = \{0, 2, 4, 6, ...\}$

Alphabet: $\Sigma = \{0, 1, 2, ..., 9\}$

Decimal numbers alphabet : $\Sigma = \{0,1,2,\ldots,9\}$

String : 567463386 102345

Binary numbers alphabet : $\Sigma = \{0,1\}$

String

10001000 1011011

String Operations

$$w = a_1 a_2 \cdots a_n$$
$$v = b_1 b_2 \cdots b_m$$

abba bbbaa

Concatenation

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$
 abbabbba

$$w = a_1 a_2 \cdots a_n$$

ababaaabi

Reverse

$$w^R = a_n \cdots a_2 a_1$$

bbbaaaba

String Length

$$w = a_1 a_2 \cdots a_n$$

Length: |w| = n

Examples:

$$|abba=4|$$

 $|aa|=2|$
 $|a|=1|$

Length of Concatenation |uv| = |u| + |v|

Example: u = aab |u| = 3v = abaab |v| = 5

$$|uv| = |aababaabee 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

Empty String A string with no letters is denoted: λ Or ε

Observations:
$$|\lambda| = 0$$

$$\lambda w = w\lambda = w$$

$\lambda abba = abba\lambda = ab\lambda ba = abba$

Substring

Substring of string: a subsequence of consecutive characters

StringSubstringabbaababbaabbaabbababbabbal

Prefix and Suffix		
abb		
Prefixes	Suffixes	
λ	abba	w=uv
а	bbab	profix
ab	bab	prenx (
abb	ab	SUITA
abba	\boldsymbol{b}	
abba	λ	

Another Operation

$$w^n = ww_m u_n$$

 n
Example: $(abbd^2 = abbaabl)$

Definition:

$$w^0 = \lambda$$

$$(abbd^0 = \lambda$$

The * Operation Σ^* : the set of all possible strings from alphabet Σ

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

The + Operation Σ^+ : the set of all possible strings from alphabet Σ except

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, ...\}$$

$\Sigma^{+} = \Sigma^{*} - \lambda$ $\Sigma^{+} = \{a, b, aa, ab, ba, bb, aaa, aab, ...\}$

<u>Languages</u>

A language over alphabet is any subset of Σ^* Examples:

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, ...\}$$

- Language: $\{\lambda\}$
- Language: {*a,aa,aab*}

Language: {\lambda,ab,aaaaa}

More Language Examples

Alphabet $\Sigma = \{a, b\}$ An infinite language $L = \{a^n b^n : n \ge 0\}$

Prime numbers

Alphabet $\Sigma = \{0, 1, 2, ..., 9\}$

Language:

PRIMES = { $x : x \in \Sigma^*$ and x is prime}

PRIMES={2,3,5,7,1,1,1,3,1,7,...}

Even and odd numbers

Alphabet $\Sigma = \{0, 1, 2, ..., 9\}$

 $EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even}\}$ $EVEN = \{0, 2, 4, 6, ...\}$

 $ODD = \{x : x \in \Sigma^* \text{ and} x \text{ is odd} \}$ $ODD = \{1,3,5,7,...\}$

Note that:

 $\oslash = \{\} \neq \{\lambda\}$ Sets $|\{\} = |\emptyset| = 0$ Set size $|\{\lambda\} = 1$ Set size

String length $|\lambda| = 0$

Operations on Languages The usual set operations

 $\{a,ab,aaaa \downarrow \cup \{bb,ab\} = \{a,ab,bb,aaaa\}$ $\{a,ab,aaaa \downarrow \cap \{bb,ab\} = \{ab\}$ $\{a,ab,aaaa \downarrow - \{bb,ab\} = \{a,aaaa \downarrow$ Complement:

$$L = \Sigma^* - L$$

 $[a,bd] = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$

Reverse

Definition:
$$L^R = \{w^R : w \in L\}$$

 $L = \{a^n b^n : n \ge 0\}$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenation

Definition: $L_1L_2 = \{xy: x \in L_1, y \in L_2\}$

Example:

a,ab,ba

Another Operation **Definition**: $L^n = I L \to L$ n ${a,b}^{3} = {a,b} {a,b} = {a,b} {a,b} =$

$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

Positive Closure

Definition: $L^+ = L^1 \cup L^2 \cup \cdots$

Same with L^* but without the λ

Questions ?? ?