310241: Theory of Computation

Theory of Computation

- Course Objectives:
	- To Study abstract computing models
	- To learn Grammar and Turing Machine
	- To learn about the theory of computability and complexity

Theory of Computation

- Course Outcomes: On completion of the course, student will be able to–
- design deterministic Turing machine for all inputs and all outputs
- subdivide problem space based on input subdivision using constraints
- apply linguistic theory

Unit - 1

- ◦Introduction to Formal language,
- ◦introduction to language translation logic, Essentials of translation,
- Alphabets and languages, Finite representation of language,
- ◦Finite Automata (FA): An Informal Picture of FA, Finite State Machine (FSM), Language accepted by FA,
- ◦Definition of Regular Language, Deterministic and Nondeterministic FA(DFA and NFA), epsilon- NFA,
- ◦FA with output: Moore and Mealy machines Definition, models, inter-conversion.
- ◦Case Study: FSM for vending machine, spell checker Unit

Introduction to Theory of Computation

- One of the most fundamental course of Computer Engineering.
- Help to understand how people have thought about **computer science** as a **science** in past 50 years.
- Its is mainly about what kind of things can you **compute mechanically with machines** , **how fast** and **how much space** does it take to do so.

Example -1

- Lets consider a machine that **accepts all binary strings that ends with '0'** and reject all other strings that do not end with '0'
- Eg. 11010010 [Accepts] 10011001 [Rejects]

Example-2

- Lets consider a machine that **accepts all valid java codes.**
- Java code \rightarrow Binary Equivalent of code -> Valid ? [Accepts]

Invalid [Rejects]

Can We design such a system ?????

Example-2 (Cont..)

Yes……

Eg. Compiler

We know compile only accepts valid code and if it is not written correctly ,then it gives error and says It's invalid.

By now u must have got sligh $\frac{1}{2}$ of

TOC and Compiler relation.

shutterstock.com · 1142789993

Basic Definitions

- 1. Alphabet a finite set of symbols.
	- \blacksquare Notation: Σ .
	- Examples: Binary alphabet {0,1},

English alphabet {a,...,z,!,?,...}

- 2. String over an alphabet Σ a finite sequence of symbols
	- from Σ .
	- Notation: (a) Letters u, v, w, x, y, and z denote strings.

(b) Convention: concatenate the symbols.

parentheses or commas parentheses or commas used.

– Examples: 0000 is a string over the binary alphabet. a!? is a string over the English alphabet.

Definitions (contd.)

- 3. Empty string: e or ε denotes the empty sequence of symbols.
- 4. Language over alphabet Σ a set of strings over Σ .
	- Notation: L.
	- Examples:
		- {0, 00, 000, ...} is an "infinite" language over the binary alphabet.
		- {a, b, c} is a "finite" language over the English alphabet.

Definitions (contd.)

- 5. Empty language empty set of strings. $Notation: Φ .$
- 6. Binary operation on strings: Concatenation of two strings u.v concatenate the symbols of u and v.
	- Notation: uv
	- Examples:
		- \bullet 00.11 = 0011.
		- \bullet $\varepsilon.u = u.\varepsilon = u$ for every u. (identity for concatenation)

Languages

Language: a set of strings

String: a sequence of symbols from some alphabet

Example: Strings: cat, dog, house Language: {cat, dog, house}

Alphabet: $\Sigma = \{a,b,c,...,z\}$

Fal 206 MESCOE

Alphabets and Strings

Example Alphabet: $\Sigma =$ $\{a,b\}$ An alphabet is a set of symbols

A string is a sequence of symbols from the alphabet

 $w = abba$ $v = bbba$ aa $u = ab$ aaabbbaaba abba ab a Example Strings

Languages are used to describe computation problems:

PRIMES {2,3,5,7,1 11 31 7...}

$EVEN = \{0,2,4,6,...\}$

Alphabet: $\Sigma = \{0, 1, 2, ..., 9\}$

$\Sigma = \{0,1,2,...,9\}$ Decimal numbers alphabet :

102345 567463386 String :

$\Sigma = \{0,1\}$ Binary numbers alphabet :

String

10001000 1011011

String Operations

$$
w = a_1 a_2 \cdots a_n
$$

$$
v = b_1 b_2 \cdots b_m
$$

bbbaaa abba

Concatenation

$$
wv = a_1a_2 \cdots a_nb_1b_2 \cdots b_m \qquad abbabbba
$$

 $w = a_1 a_2 \cdots a_n$

ababaaabi

Reverse

$$
w^R = a_n \cdots a_2 a_1
$$

bbbaaaba

String Length

$$
w = a_1 a_2 \cdots a_n
$$

Length: $|w|=n$

Examples:

$$
|ab\,a=4
$$

$$
|ad=2
$$

$$
|a|=1
$$

Length of Concatenation $|u v = |u + v|$

Example: $v = abaab$ $v = 5$ $u = aab$ $|u| = 3$

$$
|uv=|aababad\phi B|
$$

$$
|uv=|u+|v|=3+5=8
$$

Empty String A string with no letters is denoted: λ Or ε

$$
\textbf{Observations:} \quad |\lambda| = 0
$$

$$
\lambda w = w\lambda = w
$$

λ abba $=$ abba λ $=$ ab λ ba $=$ abba

Substring

Substring of string: a subsequence of consecutive characters

> String Substring *bbal b abba ab* abba *abba abba* abba

Another Operation
\n
$$
w^n = w w_{n}w
$$
\nExample:
$$
(abbb)^2 = abbaabk
$$

Definition:

$$
w^0=\lambda
$$

$$
(abbd^0=\lambda
$$

The $*$ Operation Σ^* : the set of all possible strings from alphabets

$$
\Sigma = \{a,b\}
$$

$$
\Sigma^* = \{ \lambda, a, b, aa, ab, b, ab, b, a, a, a, b, ...\}
$$

The $+$ Operation Σ^+ : the set of all possible strings from alphabets except₂

$$
\Sigma = \{a,b\}
$$

$$
\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aa, aab...\}
$$

$\Sigma^+ = \Sigma^* - \lambda$ $\Sigma^+ = \{a,b,aa,ab,ba,bba,aaab...\}$

Languages

A language over alphabet is any subset of Σ^* Examples:

$$
\Sigma = \{a,b\}
$$

$$
\Sigma^* = \{\lambda,a,b,aa,ab,ba,bb,aa,...
$$

- Language: $\{\lambda\}$
- Language: $\{a, aa, aab\}$

Language: { λ , abbababaaa, ab, aaaaada

More Language Examples

An infinite language $L = \{a^n b^n : n \geq 0\}$ Alphabet $\Sigma = \{a,b\}$

Prime numbers

Alphabet $\Sigma = \{0, 1, 2, ..., 9\}$

Language:

PRIMES = { $x : x \in \Sigma^*$ and x is prime]

$PRIMES$ {2,3,5,7,1 11 31 7...}

Even and odd numbers

Alphabet $\Sigma = \{0, 1, 2, ..., 9\}$

 $EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even}\}$ $EVEN = \{0,2,4,6,...\}$

 $ODD = \{x : x \in \Sigma^* \text{ and } x \text{ is odd}\}\$ $ODD = \{1,3,5,7,...\}$

Note that:

 $\emptyset = \{\} \neq \{\lambda\}$ $|\{\}\!\}=|\!\!\!\infty|=0$ $|\{\lambda\}=1$ Sets Set size Set size

 $\left|\lambda\right|=\!0$ String length

Operations on Languages The usual set operations

Complement: a , ab , aa a d \cup $\{bb, ab\}$ ab $\}$ $=$ $\{a$, ab , bb , aa ad $\{a, ab, aaa\phi \cap \{bb\}ab$ ab $\}$ = $\{ab\}$ a , ab , aa *ad* \rightarrow $\{bb\}$, ab $=$ $\{a$, aa ad

$$
L = \Sigma^* \text{-} L
$$

 $\{a, b\bar{a} = \{ \lambda, b, a\bar{a}, a\bar{b}, b\bar{b}, a\bar{a}\} \}$

Reverse

Definition:
$$
L^R = \{w^R : w \in L\}
$$

Examples: \langle ab,aabbab $\phi^{\text{R}} =$ {ba,baaabab *R*), aabbab $d^K =$ $\{ba,ba\}$

> $L = \{a^n b^n : n \ge 0\}$ n_{h} n

$$
L^R = \{b^n a^n : n \ge 0\}
$$

Concatenation

Definition: $L_1L_2 = |xy; x \in L_1, y \in L_2|$

Example:

$\{a,ab,bd\}$ b, ad

$=$ ab, aag abbabaababbaaq

Another Operation Definition: $L^n = L_{\mathbf{F}}$ if Special case: *n* $L^n = L$ _{*k*} L \uparrow a, b ^{∞} = a, b ∞ a, b ∞ a, b \set{aaqaa} babaabb baq b abq b b b b 3 $=$ $\langle a,b \rangle \langle a,b \rangle =$

$$
L^0 = \{ \lambda \}
$$

$$
\{a, bba, aaa\}^0 = \{a\}
$$

Star-Closure (Kleene *) $L^* = L^0 \cup I^1 \cup I^2 \cdots$ ${a,bb}^* = \begin{cases} \lambda, \\ a,bb \\ aa, abbbbabbbb \end{cases}$

Positive Closure

Definition: $L^+ = L^1 \cup L^2 \cup \cdots$

Same with L^* but without the λ

$$
\{a, bb^+ = \begin{cases} a, bb \\ aa, abbbbabbbb \end{cases}
$$

$$
(aa, aabbabababababbb).
$$

Questions ?? ?