2
0
mirror of https://github.com/Shawn-Shan/fawkes.git synced 2024-11-13 08:11:30 +05:30
fawkes/fawkes_dev/eval_cloak.py

170 lines
6.3 KiB
Python
Raw Normal View History

2020-05-18 05:48:41 +05:30
import argparse
2020-05-19 02:05:14 +05:30
import os
import sys
2020-05-19 02:05:14 +05:30
import numpy as np
sys.path.append("/home/shansixioing/fawkes/fawkes")
from utils import extract_faces, get_dataset_path, init_gpu, load_extractor, load_victim_model
2020-05-18 05:48:41 +05:30
import random
import glob
2020-05-19 02:05:14 +05:30
from keras.preprocessing import image
from keras.utils import to_categorical
from keras.applications.vgg16 import preprocess_input
2020-05-18 05:48:41 +05:30
def select_samples(data_dir):
all_data_path = []
for cls in os.listdir(data_dir):
cls_dir = os.path.join(data_dir, cls)
for data_path in os.listdir(cls_dir):
all_data_path.append(os.path.join(cls_dir, data_path))
return all_data_path
def generator_wrap(protect_images, test=False, validation_split=0.1):
train_data_dir, test_data_dir, num_classes, num_images = get_dataset_path(args.dataset)
idx = 0
path2class = {}
path2imgs_list = {}
for target_path in sorted(glob.glob(train_data_dir + "/*")):
path2class[target_path] = idx
path2imgs_list[target_path] = glob.glob(os.path.join(target_path, "*"))
idx += 1
if idx >= args.num_classes:
break
path2class["protected"] = idx
2020-05-19 02:05:14 +05:30
np.random.seed(12345)
2020-05-18 05:48:41 +05:30
while True:
batch_X = []
batch_Y = []
cur_batch_path = np.random.choice(list(path2class.keys()), args.batch_size)
2020-05-18 05:48:41 +05:30
for p in cur_batch_path:
cur_y = path2class[p]
if test and p == 'protected':
2020-05-18 05:48:41 +05:30
continue
# protect class images in train dataset
elif p == 'protected':
cur_x = random.choice(protect_images)
2020-05-18 05:48:41 +05:30
else:
cur_path = random.choice(path2imgs_list[p])
im = image.load_img(cur_path, target_size=(224, 224))
cur_x = image.img_to_array(im)
cur_x = preprocess_input(cur_x)
2020-05-18 05:48:41 +05:30
batch_X.append(cur_x)
batch_Y.append(cur_y)
batch_X = np.array(batch_X)
batch_Y = to_categorical(np.array(batch_Y), num_classes=args.num_classes + 1)
2020-05-18 05:48:41 +05:30
yield batch_X, batch_Y
def eval_uncloaked_test_data(cloak_data, n_classes):
original_label = cloak_data.path2idx[list(cloak_data.protect_class_path)[0]]
protect_test_X = cloak_data.protect_test_X
original_Y = [original_label] * len(protect_test_X)
original_Y = to_categorical(original_Y, n_classes)
return protect_test_X, original_Y
def eval_cloaked_test_data(cloak_data, n_classes, validation_split=0.1):
split = int(len(cloak_data.cloaked_protect_train_X) * (1 - validation_split))
cloaked_test_X = cloak_data.cloaked_protect_train_X[split:]
original_label = cloak_data.path2idx[list(cloak_data.protect_class_path)[0]]
original_Y = [original_label] * len(cloaked_test_X)
original_Y = to_categorical(original_Y, n_classes)
return cloaked_test_X, original_Y
def main():
2020-05-19 02:05:14 +05:30
init_gpu(args.gpu)
#
# if args.dataset == 'pubfig':
# N_CLASSES = 65
# CLOAK_DIR = args.cloak_data
# elif args.dataset == 'scrub':
# N_CLASSES = 530
# CLOAK_DIR = args.cloak_data
# else:
# raise ValueError
2020-05-18 05:48:41 +05:30
print("Build attacker's model")
2020-05-19 02:05:14 +05:30
image_paths = glob.glob(os.path.join(args.directory, "*"))
original_image_paths = sorted([path for path in image_paths if "_cloaked" not in path.split("/")[-1]])
2020-05-19 02:05:14 +05:30
protect_image_paths = sorted([path for path in image_paths if "_cloaked" in path.split("/")[-1]])
2020-05-18 05:48:41 +05:30
original_imgs = np.array([extract_faces(image.img_to_array(image.load_img(cur_path))) for cur_path in
original_image_paths[:150]])
original_y = to_categorical([args.num_classes] * len(original_imgs), num_classes=args.num_classes + 1)
2020-05-18 05:48:41 +05:30
protect_imgs = [extract_faces(image.img_to_array(image.load_img(cur_path))) for cur_path in
protect_image_paths]
2020-05-18 05:48:41 +05:30
train_generator = generator_wrap(protect_imgs,
validation_split=args.validation_split)
test_generator = generator_wrap(protect_imgs, test=True,
validation_split=args.validation_split)
base_model = load_extractor(args.transfer_model)
model = load_victim_model(teacher_model=base_model, number_classes=args.num_classes + 1)
# cloaked_test_X, cloaked_test_Y = eval_cloaked_test_data(cloak_data, args.num_classes,
# validation_split=args.validation_split)
# try:
train_data_dir, test_data_dir, num_classes, num_images = get_dataset_path(args.dataset)
model.fit_generator(train_generator, steps_per_epoch=num_images // 32,
validation_data=(original_imgs, original_y),
epochs=args.n_epochs,
verbose=1,
use_multiprocessing=True, workers=5)
# except KeyboardInterrupt:
# pass
_, acc_original = model.evaluate(original_imgs, original_y, verbose=0)
2020-05-18 05:48:41 +05:30
print("Accuracy on uncloaked/original images TEST: {:.4f}".format(acc_original))
# EVAL_RES['acc_original'] = acc_original
2020-05-18 05:48:41 +05:30
_, other_acc = model.evaluate_generator(test_generator, verbose=0, steps=50)
print("Accuracy on other classes {:.4f}".format(other_acc))
# EVAL_RES['other_acc'] = other_acc
# dump_dictionary_as_json(EVAL_RES, os.path.join(CLOAK_DIR, "eval_seed{}.json".format(args.seed_idx)))
2020-05-18 05:48:41 +05:30
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=str,
2020-06-06 11:05:04 +05:30
help='GPU id', default='0')
2020-05-18 05:48:41 +05:30
parser.add_argument('--dataset', type=str,
2020-05-19 02:05:14 +05:30
help='name of dataset', default='scrub')
parser.add_argument('--num_classes', type=int,
help='name of dataset', default=520)
parser.add_argument('--directory', '-d', type=str,
2020-05-19 02:05:14 +05:30
help='name of the cloak result directory',
default='img/')
2020-05-18 05:48:41 +05:30
parser.add_argument('--transfer_model', type=str,
help='the feature extractor used for tracker model training. ', default='low_extract')
2020-05-18 05:48:41 +05:30
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--validation_split', type=float, default=0.1)
parser.add_argument('--n_epochs', type=int, default=3)
2020-05-18 05:48:41 +05:30
return parser.parse_args(argv)
if __name__ == '__main__':
args = parse_arguments(sys.argv[1:])
main()