DatabaseManagementSystems/Practical/Assignment-B2/Queries-B2.md
2024-10-23 10:41:46 +05:30

204 lines
3.7 KiB
Markdown
Executable File

## Queries-B2
### Group A
> [!NOTE]
> Use Employee database created in Assignment B-01 and perform following aggregation operation
> Refer [Queries-B1](https://git.kska.io/sppu-te-comp-content/DatabaseManagementSystems/src/branch/main/Practical/Assignment-B1/Queries-B1.md)
1. Return Designation with Total Salary Above 20000:
```mongodb
db.Employee.aggregate([
{
$group: {
_id: "$Designation",
TotalSalary: { $sum: "$Salary" }
}
},
{
$match: {
TotalSalary: { $gt: 20000 }
}
}
])
```
2. Find Employee with Total Salary for Each City with Designation "Developer":
```mongodb
db.Employee.aggregate([
{
$match: { Designation: "Developer" }
},
{
$group: {
_id: { $arrayElemAt: ["$Address.PAddr", 0] },
TotalSalary: { $sum: "$Salary" }
}
}
])
```
3. Find Total Salary of Employee with Designation "Tester" for Each Company:
```mongodb
db.Employee.aggregate([
{
$match: { Designation: "Tester" }
},
{
$group: {
_id: "$Company_name",
TotalSalary: { $sum: "$Salary" }
}
}
])
```
4. Returns Names and _id in Upper Case and in Alphabetical Order:
```mongodb
db.Employee.aggregate([
{
$project: {
_id: 1,
Name: { $toUpper: { $concat: ["$Name.FName", " ", "$Name.LName"] } }
}
},
{
$sort: { Name: 1 }
}
])
```
5. Count All Records from Collection:
```mongodb
db.Employee.countDocuments()
```
6. For Each Unique Designation, Find Avg Salary and Output Sorted by AvgSal:
```mongodb
db.Employee.aggregate([
{
$group: {
_id: "$Designation",
AvgSalary: { $avg: "$Salary" }
}
},
{
$sort: { AvgSalary: 1 }
}
])
```
7. Return Separate Value in the Expertise Array Where Name of Employee is "Aditya":
```mongodb
db.Employee.aggregate([
{
$match: { "Name.FName": "Aditya" }
},
{
$unwind: "$Expertise"
},
{
$project: { Expertise: 1 }
}
])
```
8. Return Separate Value in the Expertise Array and Return Sum of Each Element of Array:
```mongodb
db.Employee.aggregate([
{
$unwind: "$Expertise"
},
{
$group: {
_id: "$Expertise",
TotalCount: { $sum: 1 }
}
}
])
```
9. Return Array for Designation Whose Address is "Pune":
```mongodb
db.Employee.aggregate([
{
$match: { "Address.PAddr": { $regex: "Pune" } }
},
{
$project: { Designation: 1 }
}
])
```
10. Return Max and Min Salary for Each Company:
```mongodb
db.Employee.aggregate([
{
$group: {
_id: "$Company_name",
MaxSalary: { $max: "$Salary" },
MinSalary: { $min: "$Salary" }
}
}
])
```
### Group B
> [!NOTE]
> Use Employee database created in Assignment B-01 and perform following aggregation operation
> Refer [Queries-B1](https://git.kska.io/sppu-te-comp-content/DatabaseManagementSystems/src/branch/main/Practical/Assignment-B1/Queries-B1.md)
1. Create Single Field Indexes on Designation:
```mongodb
db.Employee.createIndex({ Designation: 1 })
```
2. Create Compound Indexes on Name and Age:
```mongodb
db.Employee.createIndex({ "Name.FName": 1, Age: -1 })
```
3. Create Multikey Indexes on Expertise Array:
```mongodb
db.Employee.createIndex({ Expertise: 1 })
```
4. Return a List of All Indexes on Collection:
```mongodb
db.Employee.getIndexes()
```
5. Rebuild Indexes:
```mongodb
db.Employee.reIndex()
```
6. Drop Index on Remove Specific Index:
```mongodb
db.Employee.dropIndex("Designation_1")
```
7. Remove All Indexes Except for the _id Index from a Collection:
```mongodb
db.Employee.dropIndexes()
```